30 research outputs found

    Bioconvective electromagnetic nanofluid transport from a wedge geometry : simulation of smart electro-conductive bio-nano-polymer processing

    Get PDF
    A mathematical model is presented for steady, two-dimensional, stagnation-point flow, heat, mass, and micro-organism transfer in a viscous, incompressible, bioconvective, electromagnetic nanofluid along a wedge with Stefan blowing effects, hydrodynamic slip, and multiple convective boundary conditions. Gyrotactic micro-organisms are present in the nanofluid and bioconvection arises, characterized by micro-organisms swimming under a competing torque. Similarity transformations are used to render the system of governing partial differential equations into a system of coupled similarity equations. The transformed equations are solved numerically with the BVP5C method. The impact of emerging parameters on dimensionless velocity, temperature, magnetic induction function, nanoparticle volume fraction, and density of motile micro-organisms is studied graphically. Furthermore, the responses of the local skin friction, local Nusselt number, local Sherwood number, and the wall gradient of density of motile micro-organism number to variation in these parameters are elaborated. Validation of solutions with previous studies based on special cases of the general model is included. The simulations are relevant to the processing of biological, electro-conductive nanomaterials and industrial hygienic coating systems exploiting combined electromagnetics, nano-systems, and microscopic, bio-propulsion mechanisms

    Numerical study of slip effects on unsteady aysmmetric bioconvective nanofluid flow in a porous microchannel with an expanding/ contracting upper wall using Buongiorno’s model

    Get PDF
    In this paper, the unsteady fully developed forced convective flow of viscous incompressible biofluid that contains both nanoparticles and gyrotactic microorganisms in a horizontal micro-channel is studied. Buongiorno’s model is employed. The upper channel wall is either expanding or contracting and permeable and the lower wall is static and impermeable. The plate separation is therefore a function of time. Velocity, temperature, nano-particle species (mass) and motile micro-organism slip effects are taken into account at the upper wall. By using the appropriate similarity transformation for the velocity, temperature, nanoparticle volume fraction and motile microorganism density, the governing partial differential conservation equations are reduced to a set of similarity ordinary differential equations. These equations under prescribed boundary conditions are solved numerically using the Runge-Kutta-Fehlberg fourth-fifth order numerical quadrature in the MAPLE symbolic software. Excellent agreement between the present computations and solutions available in the literature (for special cases) is achieved. The key thermofluid parameters emerging are identified as Reynolds number, wall expansion ratio, Prandtl number, Brownian motion parameter, thermophoresis parameter, Lewis number, bioconvection Lewis number and bioconvection Péclet number. The influence of all these parameters on flow velocity, temperature, nano-particle volume fraction (concentration) and motile micro-organism density function is elaborated. Furthermore graphical solutions are included for skin friction, wall heat transfer rate, nano-particle mass transfer rate and micro-organism transfer rate. Increasing expansion ratio is observed to enhance temperatures and motile micro-organism density. Both nanoparticle volume fraction and microorganism increases with an increase in momentum slip. The dimensionless temperature and microorganism increases as wall expansion increases. Applications of the study arise in advanced nanomechanical bioconvection energy conversion devices, bio-nano-coolant deployment systems etc

    Non-similar solution of g-jitter induced unsteady magnetohydrodynamic radiative slip flow of nanofluid

    Get PDF
    We present a mathematical model and numerical simulation of the unsteady 2-D g-jitter-free and forced convective flow of water-based nanofluid from a flat plate, considering both the velocity slip and thermal slip conditions imposed on the wall of the plate. The Darcian model is used, and both cases of a calm and moving free stream are considered. In place of the extensively used linearly varying radiative heat flux, the nonlinearly varying heat flux calculation is applied to produce practically useful results. Further, we incorporate the “zero mass flux boundary condition” which is believed to be more realistic than the earlier extensively used “actively” controlled model. The parameter influences on the non-dimensional velocity, temperature, nanoparticle volume fraction, skin friction and heat transfer rates are visualized graphically and discussed in detail. Special cases of the results are benchmarked with those existing in the literature, and a good arrangement is obtained. It is found that the rate of heat transfer is lower for the calm free stream rather than the moving free stream

    A study on film piracy among students in Malaysia / Syamimi Qurratu Aim Ismail, Nurwasilah Muhammad and Nurul Syazwani Mohd Sukri

    Get PDF
    In this study, the main objective of the writers has been to study the film piracy in Malaysia, especially its enforcements. To this degree, the writers hope that this study has at least been a partial success and may prompt a superior comprehension and enforcement of the film piracy by the authority. The general law concerning film piracy is the Copyright Act 1987 and the Optical Disc Act 2000. In spite of the fact that the procurements in these Acts has explicitly constitutes the law and liability that would be endured by the wrongdoer, the film piracy is as of now occurrence. Surely, the authors have been profited colossally from this study. The writers would like to take a chance to record their appreciation and thankfulness to the staff of the Malaysian Intellectual Property Organization (MylPO), not to overlook all other people who have helped in somehow sometime during this study

    Numerical investigation of Von Karman swirling bioconvective nanofluid transport from a rotating disk in a porous medium with Stefan blowing and anisotropic slip effects

    Get PDF
    In recent years, significant progress has been made in modern micro- and nanotechnologies related to applications in micro/nano-electronic devices. These technologies are increasingly utilizing sophisticated fluent media to enhance performance. Among the new trends is the simultaneous adoption of nanofluids and biological micro-organisms. Motivated by bio-nanofluid rotating disk oxygenators in medical engineering, in the current work, a mathematical model is developed for steady convective Von Karman swirling flow from an impermeable power-law radially stretched disk rotating in a Darcy porous medium saturated with nanofluid doped with gyrotactic micro-organisms. Anisotropic slip at the wall and blowing effects due to concentration are incorporated. The nano-bio transport model is formulated using non-linear partial differential equations (NPDEs), which are transformed to a set of similarity ordinary differential equations (SODEs) by appropriate transformations. The transformed boundary value problem is solved by a Chebyshev collocation method. The impact of key parameters on dimensionless velocity components, concentration, temperature and motile microorganism density distributions are computed and visualized graphically. Validation with previous studies is included. It is found that that the effects of suction provide a better enhancement of the heat, mass and microorganisms transfer in comparison to blowing. Moreover, physical quantities decrease with higher slip parameters irrespective of the existence of blowing. Temperature is suppressed with increasing thermal slip whereas nanoparticle concentration is suppressed with increasing wall mass slip. Micro-organism density number increases with the greater microorganism slip. Radial skin friction is boosted with positive values of the power law stretching parameter whereas it is decreased with negative values. The converse response is computed for circumferential skin friction, nanoparticle mass transfer rate and motile micro-organism density number gradient. Results from this study are relevant to novel bioreactors, membrane oxygenators, food processing and bio-chromatography

    Computation of melting dissipative magnetohydrodynamic nanofluid bioconvection with second order slip and variable thermophysical properties

    Get PDF
    This paper studies the combined effects of viscous dissipation, first and second order slip and variable transport properties on phase-change hydromagnetic bio-nanofluid convection flow from a stretching sheet. Nanoscale materials possess a much larger surface to volume ratio than bulk materials which significantly modifies their thermodynamic and thermal properties and lowers substantially the melting point. Gyrotactic non-magnetic micro-organisms are present in the nanofluid. The transport properties are assumed to be dependent on the concentration and temperature. Via appropriate similarity variables, the governing equation with boundary conditions are converted to nonlinear ordinary differential equations and are solved using the BVP4C subroutine in the symbolic software Matlab. The non-dimensional boundary value features a melting (phase change) parameter, temperature-dependent thermal conductive parameter, first as well as second order slip parameters, mass diffusivity parameter, Schmidt number, microorganism diffusivity parameter, bioconvection Schmidt number, magnetic body force parameter, Brownian motion and thermophoresis parameter. Extensive computations are visualized for the influence of these parameters. The present simulation is of relevance in the fabrication of bio-nanomaterials for bio-inspired fuel cells

    Computational study of three-dimensional stagnation point nanofluid bio-convection flow on a moving surface with anisotropic slip and thermal jump effect

    No full text
    The effects of anisotropic slip and thermal jump on the three dimensional stagnation point flow of nanofluid containing microorganisms from a moving surface have been investigated numerically. Anisotropic slip takes place on geometrically striated surfaces and superhydrophobic strips. Zero mass flux of nanoparticles at the surface is applied to achieve practically applicable results. Using appropriate similarity transformations, the transport equations are reduced to a system of nonlinear ordinary differential equations with coupled boundary conditions. Numerical solutions are reported by means of very efficient numerical method provided by the symbolic code Maple. The influences of the emerging parameters on the dimensionless velocity, temperature, nanoparticle volumetric fraction, density of motile micro-organisms profiles, as well as the local skin friction coefficient, the local Nusselt number and the local density of the motile microorganisms are displayed graphically and illustrated in detail. The computations demonstrate that the skin friction along the x-axis is enhanced with the velocity slip parameter along the y axis. The converse response is observed for the dimensionless skin friction along the y-axis. The heat transfer rate is increased with greater velocity slip effects but depressed with the thermal slip parameter. The local Nusselt number is increased with Prandtl number and decreased with the thermophoresis parameter. The local density for motile microorganisms is enhanced with velocity slip parameters and depressed with the bioconvection Lewis number, thermophoresis and PĂ©clet number. Numerical results are validated where possible with published results and excellent correlation is achieved
    corecore